
What is commutative algebra? 
 
In school and intro univ. algebra you studied _division with 
remainder_ for integers and polynomials in k[x]. 
 
Integers: given a,b positive integers, you can write 
   a = b*q + r with 0 <= r < b. 
If you have  a  cakes to give to  b  kids, hand them out equally  b 
at a time until the remainder r < b is not enough to go around. 
 
Polynomials: given A, B in k[x] 
  A = an x^n + a_{n-1}x^{n-1} + .. a0 
  B = bm x^m + .. b0 
with deg A = n, deg B = m (deg means top term <> 0). If m <= n we 
can subtract a multiple of g to cancel the top term in f: 
  A - an/bm*x^{n-m}*B of deg <= n-1. 
Just continue decreasing deg A until deg (A - (mult. q*B)) < m. 
(We will see later that removing the leading term is also an 
important idea in constructing a Groebner basis.) 
 
In either case we have a notion of size of A, and can successively 
reduce it by subtraction to < size B, (and the logic has an initial 
case size B = 0). 
 
The point I want to make is that the objects we are talking 
about are quite different: integers versus polynomial functions 
or abstract polynomials. Nevertheless, the methods of argument 
are exactly the same. 
 
Please think through the argument used to show: 
 
ZZ and k[x] have division with remainder, so are PID: every 
ideal I is generated by a single element, I = (f)). And 
 
PID is a UFD: every element factorises as a product of a unit 
times a product of prime powers, uniquely up to units and order of 
the factors. This gives the usual properties of GCD and LCM, 
including the important a*f + b*g = h property of h = GCD(f,g). 
 
== 
What is commutative algebra? 
 
The 1882 paper [DW] extended this analogy in elementary algebra 
to a theory that encompasses both the ring of integers of a 
number field and the ring of functions on an algebraic curve. 
Their paper is a landmark in the development of modern algebra, 
and marks the starting point of commutative algebra. 
 
[DW] Richard Dedekind and Heinrich Weber, Theorie der 
algebraischen Funktionen einer Veränderlichen, J. reine angew. 
Math. 92 (1882), 181--290 



 
I explain this briefly (don't worry about the details -- I will 
return to the full arguments later). 
 
== 
Ring of integers of an algebraic number field 
 
An _algebraic number field_ is a finite extension field QQ in K. 
Corresponding to the ring of integers ZZ in QQ, the field K also 
has a subring O_K of integers, the subset of K of integral 
elements (details later). In any fairly complicated case, the 
division with remainder that we used for ZZ does not work for 
O_K, and it is _not_ a UFD. 
 
== 
Integral closure of an algebraic function field 
 
You know the polynomial ring k[x] over a field k (say k = CC to 
be definite). Its field of fractions k(x) consists of rational 
functions f(x)/g(x) with f,g polynomials and g <> 0. An 
_algebraic function field_ in one variable is a finite 
extension field k(x) in K (where x is transcendental). 
 
Corresponding to the polynomial ring k[t] in k(t), the same 
definition as the number field case gives the integral closure 
A of k[x] in K: A is the subset of elements of K that are 
_integral_ over k[x] (satisfy a monic equation with 
coefficients in k[x] -- no denominators allowed, and leading 
coefficient 1). This integral closure A = k[C] is the 
coordinate ring of a nonsingular affine algebraic curve C over 
k. (I am not saying that this is obvious.) In any fairly 
complicated case, this A does not have division with remainder, 
and is _not_ a UFD. 
 
== 
Dedekind and Weber's synthesis 
 
The preceding paragraphs set up the ring of integers O_K of a 
number field K, and the coordinate ring k[C] of a nonsingular 
affine curve C. These objects are major protagonists of 
algebraic number theory and algebraic geometry, and are clearly 
very different in nature. However, Dedekind and Weber [DW] say 
that these two rings can be studied using the same algebraic 
apparatus. As I said, they are usually not UFDs. 
 
The good news: if A is a ring of either type (a Dedekind 
domain), the ideals of A have _unique factorisation into prime 
ideals_. 
 
The key method of argument is _localisation_ (partial ring of 
fractions). If P is a prime ideal of A, the localisation of A 



at P is A_P = S^-1A where S = multiplicative set S = A - P. 
 
(I will go through this in detail later.) In arithmetic, 
A_P in K is the algebraic numbers that have an expression f/g 
with g notin P. For a point P of and algebraic curve C, A_P 
consists of the rational functions in k(C) that have an 
expression f/g with denominator g not vanishing at P in C. 
 
For either kind of ring A_P is a discrete valuation ring (DVR). 
Although when the ring A is not a UFD, its localisation A_P is 
the simplest possible UFD: it has a single prime element z (up 
to units), and every nonzero element h in K has the 
factorisation 
  h = z^n*(unit), where n = v_P(h) is the valuation of h at P. 
 
Valuations then determine everything about A in K and the 
ideals of A: an element h in K is in A if and only if it has 
valuation >= 0 at every P. Moroever, every ideal I in A also 
has a valuation at P (namely, min v_P(i) taken over i in I). 
For any given nonzero ideal I of A, there are just finitely 
many primes P such that v_P(I) > 0, and I equals the product of 
P^v_P(I). 
 
== 
Modern abstract algebra 
 
Notice the breakthrough aspect of Dedekind and Weber: modern 
algebra has axioms and abstract arguments, and you often 
work with objects in a symbolic way. In this case, without 
reference to what the elements of the ring actually are.


