What is commutative algebra?
In school and intro univ. algebra you studied _division with remainder_ for integers and polynomials in $k[x]$.

Integers: given a, b positive integers, you can write $a=b * q+r$ with $0<=r<b$.
If you have a cakes to give to b kids, hand them out equally b at a time until the remainder $r<b$ is not enough to go around.

Polynomials: given A, B in $k[x]$
$A=a n x^{\wedge} n+a_{-}\{n-1\} x^{\wedge}\{n-1\}+\ldots a 0$
$B=b m x^{\wedge} m+\ldots b 0$
with $\operatorname{deg} A=n$, $\operatorname{deg} B=m$ (deg means top term <> 0). If $m<=n$ we can subtract a multiple of g to cancel the top term in f :
$A-a n / b m * x^{\wedge}\{n-m\} * B$ of $\operatorname{deg}<=n-1$.
Just continue decreasing deg A until deg (A - (mult. q*B)) < m. (We will see later that removing the leading term is also an important idea in constructing a Groebner basis.)

In either case we have a notion of size of A, and can successively reduce it by subtraction to < size B, (and the logic has an initial case size $\mathrm{B}=0$).

The point I want to make is that the objects we are talking about are quite different: integers versus polynomial functions or abstract polynomials. Nevertheless, the methods of argument are exactly the same.

Please think through the argument used to show:
ZZ and k[x] have division with remainder, so are PID: every ideal I is generated by a single element, $I=(f)$). And

PID is a UFD: every element factorises as a product of a unit times a product of prime powers, uniquely up to units and order of the factors. This gives the usual properties of GCD and LCM, including the important $a * f+b * g=h$ property of $h=G C D(f, g)$.
==
What is commutative algebra?
The 1882 paper [DW] extended this analogy in elementary algebra to a theory that encompasses both the ring of integers of a number field and the ring of functions on an algebraic curve. Their paper is a landmark in the development of modern algebra, and marks the starting point of commutative algebra.
[DW] Richard Dedekind and Heinrich Weber, Theorie der algebraischen Funktionen einer Veränderlichen, J. reine angew. Math. 92 (1882), 181--290

I explain this briefly (don't worry about the details -- I will return to the full arguments later).
==
Ring of integers of an algebraic number field
An _algebraic number field_ is a finite extension field QQ in K. Corresponding to the ring of integers ZZ in QQ, the field K also has a subring 0_K of integers, the subset of K of integral elements (details later). In any fairly complicated case, the division with remainder that we used for ZZ does not work for O_K, and it is _not_ a UFD.
=
Integral closure of an algebraic function field
You know the polynomial ring $k[x]$ over a field k (say $k=C C$ to be definite). Its field of fractions $k(x)$ consists of rational functions $f(x) / g(x)$ with f, g polynomials and g <> 0. An _algebraic function field_ in one variable is a finite extension field $k(x)$ in K (where x is transcendental).

Corresponding to the polynomial ring $k[t]$ in $k(t)$, the same definition as the number field case gives the integral closure A of $k[x]$ in K : A is the subset of elements of K that are _integral_ over $k[x]$ (satisfy a monic equation with coefficients in $k[x]$-- no denominators allowed, and leading coefficient 1). This integral closure $A=k[C]$ is the coordinate ring of a nonsingular affine algebraic curve C over k. (I am not saying that this is obvious.) In any fairly complicated case, this A does not have division with remainder, and is _not_ a UFD.
==
Dedekind and Weber's synthesis
The preceding paragraphs set up the ring of integers 0_K of a number field K , and the coordinate ring $\mathrm{k}[\mathrm{C}]$ of a nonsingular affine curve C. These objects are major protagonists of algebraic number theory and algebraic geometry, and are clearly very different in nature. However, Dedekind and Weber [DW] say that these two rings can be studied using the same algebraic apparatus. As I said, they are usually not UFDs.

The good news: if A is a ring of either type (a Dedekind domain), the ideals of A have _unique factorisation into prime ideals_.

The key method of argument is _localisation_ (partial ring of fractions). If P is a prime ideal of A, the localisation of A
at P is $A _P=S^{\wedge}-1 A$ where $S=$ multiplicative set $S=A-P$.
(I will go through this in detail later.) In arithmetic, A_P in K is the algebraic numbers that have an expression f / g with g notin P. For a point P of and algebraic curve $C, A _P$ consists of the rational functions in $k(C)$ that have an expression f / g with denominator g not vanishing at P in C .

For either kind of ring $A _P$ is a discrete valuation ring (DVR). Although when the ring A is not a UFD, its localisation A_P is the simplest possible UFD: it has a single prime element z (up to units), and every nonzero element h in K has the factorisation

$$
h=z^{\wedge} n * \text { (unit), where } n=v _P(h) \text { is the valuation of } h \text { at } P \text {. }
$$

Valuations then determine everything about A in K and the ideals of A : an element h in K is in A if and only if it has valuation >= 0 at every P. Moroever, every ideal I in A also has a valuation at P (namely, min v_P(i) taken over i in I). For any given nonzero ideal I of A, there are just finitely many primes P such that $v _P(I)>0$, and I equals the product of $P^{\wedge} v_{-} P(I)$.
==
Modern abstract algebra

Notice the breakthrough aspect of Dedekind and Weber: modern algebra has axioms and abstract arguments, and you often work with objects in a symbolic way. In this case, without reference to what the elements of the ring actually are.

